
2023-02-23 03:01

Polystat: New Object Calculus
to Improve Static Program Analysis
Yegor Bugayenko

The quality of software, as one of the most important factors of business success in
modern economy, may be increased by using static program analysis. The majority
of modern programs are written in object-oriented programming languages, like Java
or C++, while most static analysis methods treat them as procedural and algorithmic
ones, reducing the ability to better understand programmers’ intent and find more
functional defects. The absence of a formal object calculus behind modern object-
oriented languages is one of the key reasons. A development of such a calculus and
using it in static analysis may significantly contribute to object-oriented programming
as a whole and move static analysis to a principally new level.

1 Background

1.1 What Is Static Analysis? As was studied by Planning [61], software bugs
costed the U.S. economy about $59.5 billion annually. Static program analysis is a
valuable part of software quality control and is performed without actually executing
programs, as explained by Wagner et al. [80] and Møller et al. [56]. A growing com-
mercial use of static analysis is in the verification of properties of software used in
safety-critical computer systems and locating potentially vulnerable code, as noted
by Chess et al. [16]. According to Jackson et al. [40], the importance of code analysis of
all kinds will only grow in the future.

1.2 Usefulness Static analyzers suggest programmers to pay attention to certain
locations in the source or binary code, highlight good candidates for fixing, and some-
times even suggest fixes. The final decision of whether to fix the code or leave it “as is”
is made by the programmer. Very often the code is delivered to end-users without fixing
the bugs found by analyzers, as noted by Steidl et al. [76]. Also, as shown by Kremenek
et al. [44], most warnings do not indicate real bugs. However, according to Sadowski
et al. [68], only a few percent of programmers react negatively to recommendations of
analyzers.

1.3 Unsoundness Some functional bugs may be mistakenly reported where the
code is actually correct or couldn’t have led to significant misbehavior of the soft-

Yegor Bugayenko
Page #2 of 16

2023-02-23 03:01

ware [80]. Moreover, big proportion of “false positive” results in static analysis tools
being disregarded by developers as was examined by Johnson et al. [41]. The inaccuracy
due to “false positives” is known as “unsoundness” of analysis [40]. It was explained
by Møller et al. [56] that “a program analyzer is sound if it never gives incorrect results
(but it may answer maybe).” Accuracy of 70% is considered to be high for modern
analyzers, since ones that effectively find errors have “false positive” rates from 30% to
100% [27, 29, 28, 79]. As noted by Gosain et al. [33], “precise analysis is more costly.”

1.4 Standards There are organizations, such as MISRA, SEI, MITRE and ISO,
which publish guidelines, recommendations and standards for software developers [55,
14, 39, 66, 37, 36, 35]. Some static analyzers take those recommendations into account
and get certified, for example, Coverity, Klocwork and CodeSonar are such analyzers
certified by TüV SüD.

1.5 Front-End Most analyzers have three major components of their architecture,
as described by Binkley [6]: the parser, the internal representation, and the analysis
of this representation. The parser, which usually includes lexer, preprocessor, and
tokenizer (together known as “front-end”) in most analyzers is language-specific: it
can only parse a source code written in one or a few programming languages. Some
analyzers are polyglots, which usually is realized via an intermediary language (also
known as “intermediary representation” or IR), which the source language is translated
into, before the analysis is done. For example, Phasar [70], CodeChecker [34] and
Clang Static Analyzer [47] are open source analyzers of such kind—they analyze LLVM
code [48], which may be generated from C/C++, Java, C# and some other languages.

1.6 Internal Representations As mentioned by Binkley [6], “there are almost
as many internal representations as there are source-code analyses.” Some classic
examples include the Control-Flow Graph (CFG), the Call Graph (CG), and the Abstract
Syntax Tree (AST).

1.7 Back-End The analysis itself (also known as “back-end”), as suggested by Bink-
ley [6], can be classified along six dimensions: static versus dynamic, sound versus
unsound, safe versus unsafe, flow sensitive versus flow insensitive, context sensitive
versus context insensitive, and complexity. Gosain et al. [33] gives a detailed summary
of methods and techniques used by existing analyzers to find bugs, to name just a few:
path-sensitive data flow analysis [43], alias analysis [82], type analysis [81], symbolic
execution [72], value flow analysis [77], abstract interpretation [72], control flow anal-
ysis [2], pointer analysis [73], theorem proving [22], constraint-based analysis [78],
summary-based pointer analysis [13], and so on.

Yegor Bugayenko
Page #3 of 16

2023-02-23 03:01

2 Types of Bugs

2.1 Maintainability Bugs Bugs detected by analyzers are either maintainability,
functional, or security. Maintainability bugs, also sometimes referred to as “code style
violations,” won’t cause any functional issues to the product, if left unfixed. They may
not even be considered as bugs by some developers, since the maintainability itself
is a vague term, as explained by Broy et al. [8]. However, in most cases, fixing them
makes the source code more readable, which indirectly leads to reducing the amount of
logical mistakes made by programmers when maintaining at later date [63]. Here is an
example of Java maintainability bug detectable by the AssignmentInOperand “check”
of PMD analyzer; the code sample is adopted from the book of Sierra et al. [71, p.475]:

char[] buffer = new char[1024];
int pos = 0;
while ((data = reader.read()) > 0) {

buffer[pos++] = (char) data;
}

Here, the variable data is assigned and at the same time used as an operand for
the while statement. Such a construct may confuse programmers, especially less
experienced ones; it must be avoided, according to the command–query separation
principle suggested by Meyer [53]. In order to increase readability of the code it may
be refactored [30] to decrease complexity, coupling, and other qualities [84]:

char[] buffer = new char[1024];
int pos = 0;
while (true) {

int data = reader.read();
if (data < 0) {

break;
}
buffer[pos++] = (char) data;

}

2.2 Functional Bugs Functional bugs are more difficult to find, but they are
more important, because they may cause runtime errors if left unfixed. Even after the
refactoring suggested, the Java code snippet mentioned above contains a functional
bug related to a possible buffer overflow, if the number of symbols in the reader is
bigger than 1024. A possible fix would look like this:

char[] buffer = new char[1024];
int pos = 0;

https://pmd.github.io/latest/pmd_rules_ecmascript_codestyle.html#assignmentinoperand

Yegor Bugayenko
Page #4 of 16

2023-02-23 03:01

while (true) {
int data = reader.read();
if (data < 0) {

break;
}
if (pos >= buffer.length) {

throw new RuntimeException("Too much data");
}
buffer[pos++] = (char) data;

}

This is not a perfect fix though. One may argue that it does not improve the code in
any way, since the exception it throws is an unspecific runtime exception as opposed
to the semantically more meaningful out-of-bounds exception thrown in the previous
example. A more meaningful fix would require more code refactoring most probably
in other places of the source code, to prevent buffer overflow from happening.

2.3 Security Bugs Security bugs (aka “security vulnerabilities”) don’t affect the
functionality of a system, but may cause leakage of sensitive data or its unauthorized
modification, which is usually prohibited by the non-functional part of requirements
documentation. The snippet above reads the data into memory and raises exception in
case of buffer overflow, while the data remains in memory. If the data is sensitive and
the application crashes right after the exception is raised, the memory will contain the
data open for exposure. Here is how this problem could be fixed:

char[] buffer = new char[1024];
int pos = 0;
while (true) {

int data = reader.read();
if (data < 0) {

break;
}
if (pos >= buffer.length) {

Arrays.fill(buffer, 0); // Here!
throw new RuntimeException("Too much data");

}
buffer[pos++] = (char) data;

}

It’s important to mention that as a result of simple analysis the code above grew up
from five lines to 13 lines. This is a well-known effect of static analysis: the code gets
bigger, while its quality increases.

Yegor Bugayenko
Page #5 of 16

2023-02-23 03:01

2.4 Object-Oriented Bugs It is possible to classify functional bugs as either
common or object-oriented specific. The bug suggested above belongs to the first
category and may exist in many languages, including those that don’t have object-
oriented features, for example C. In the example above the method read() is used to
read the data. The method belongs to the object reader , which most probably is an
instance of the abstract class java.io.Reader . This class also has method close() ,
which has to be called when reading is finished: it’s a conventional Java agreement
noticeable by the presence of the Closeable interface in the list of parents of the class
Reader . The code above doesn’t call close() , which may lead to resource leakage
and eventual program crash. The code may be fixed like this (try/finally statements
are added):

char[] buffer = new char[1024];
int pos = 0;
try {

while (true) {
int data = reader.read();
if (data < 0) {

break;
}
if (pos >= buffer.length) {

Arrays.fill(buffer, 0); // Here!
throw new RuntimeException("Too much data");

}
buffer[pos++] = (char) data;

}
} finally {

reader.close();
}

There are other bugs related solely to violations of object design. There is a short list
of most obvious ones, while the full list is yet to be determined:

• Resource leakage due to violation of contracts (already explained);
• Fragile base class problem [54];
• The “diamond problem” due to wrong inheritance [65];
• Type mismatches in dynamically and/or weakly typed languages;
• Memory leaks through static variables/methods abuse;
• Non-intentional data serialization;
• Broken equality relationship due to subtyping [69];
• Name clashes due to namespace borders violation;
• Missed initialization of parent class [65];
• Object comparison by identity instead of value [7];
• Spaghetti inheritance problems [31];

Yegor Bugayenko
Page #6 of 16

2023-02-23 03:01

• Circle-ellipse problem [51];
• Stack overflow due to circular dependencies;
• Accidental calls to base class due to incomplete method overloading;
• Data precision losses at boxing/unboxing [7];
• Concurrency side-effects in mutable objects [32];
• Identity mutability problem, especially in hash maps [32];
• Class casting errors.

It’s important to mention that not all bugs are easily fixable and very often may remain
in the code even after static analysis discovers them—simply because programmers
may not have enough time and/or skills to fix them.

3 Problem Formulation

3.1 Procedural Analysis Even though existing methods of static analysis work
with object-oriented (OO) languages, like Java, C++, C#, Python, and JavaScript, they
treat the source code and its constructs as if they were written in imperative procedural
languages, like ALGOL and Assembly. They tend to ignore the complexity of “object-
orientedness” (inheritance, generics, method overloading, annotations, and so on) and
deal with low-level statements and operators. Polyglot analyzers even map the original
language to a more primitive intermediate representation, losing the entire semantic
of objects and the original intent of programmers. For example, LLVM, which is used
in many modern analyzers, doesn’t have a notion of an object or a class. The original
object-oriented code is translated into LLVM and then is analyzed as a collection of
LLVM IR instructions (very close and similar to Assembly). It seems that this design of
existing analyzers is motivated by the absence of a common OOP formalism, which
was explained later in the Section 3.3.

3.2 Redundant Completeness LLVM, as well as GraalVM [83], is a powerful in-
strument to enable cross-platform compatibility between programming languages [48].
It usually does its job in four steps: 1) converts C++ source code to LLVM IR instruc-
tions, 2) LLVM IR to Bitcode, 3) Bitcode to x86 Assembly, 4) Assembly to native binary.
Analyzers work either with LLVM instructions or with the Bitcode, parsing them into
an AST or CFG, then traversing and reasoning. LLVM, being a Virtual Machine (VM),
is very much concerned about executability of the source code after it gets to the native
binary. That’s why the instructions produced at the first step are “complete”: they
include everything required for a target platform to run the code. For example, LLVM
doesn’t have objects and Garbage Collector (GC), while Java programs expect this
feature to be present in the VM. Thus, a Java to LLVM mapper has to add a GC into the
LLVM code it generates, on top of the Java code being mapped. A classic “Hello, world!”
Java example with a single class, one statement, and five lines of code would produce

Yegor Bugayenko
Page #7 of 16

2023-02-23 03:01

dozens of thousands of LLVM lines of code1. Such a redundancy makes static analysis
more difficult, since it’s necessary to filter out “boilerplate” code, which is important at
runtime, but absolutely useless at the time of analysis.

3.3 Lack of OOP Formalism Static analyzers for OO code are designed in ad
hoc way mostly because there is no formal theory of object-oriented programming
(OOP). Stefik et al. [75]: “The term has been used to mean different things.” Madsen
et al. [50]: “There are as many definitions of OOP as there are papers and books on
the topic.” Armstrong [3]: “When reviewing the body of work on OO development,
most authors simply suggest a set of concepts that characterize OO, and move on with
their research or discussion. Thus, they are either taking for granted that the concepts
are known or implicitly acknowledging that a universal set of concepts does not exist.”
Nierstrasz [57]: “There is no uniformity or an agreement on the set of features and
mechanisms that belong in an OO language as the paradigm itself is far too general.”
It’s hard to say why exactly a very mature domain of OOP still doesn’t have a unified
formal ground, while others do, including functional and logical programming. Most
probably this happens due to intensive industry support given to major programming
languages by different large tech companies: Oracle supports Java, Microsoft supports
C#, Apple supports Swift and Objective-C, and so on. They can’t agree to each other,
while programmers demand new features to be introduced. However, it is merely a
guess.

3.4 OOP Defects to Discover New object calculus will provide the ability to
analyze OO code directly, without converting it to lower-level procedural instructions
and losing OO semantics. Thanks to this, it will be possible to detect functionality
defects which were not detectable before (or difficult to detect), including but not
limited to: invalid inheritance loops; un-initialized class and object attributes; eager
execution during object construction; hidden inter-object and inter-class dependencies;
and many more.

3.5 Theoretical Problem The inability to formally specify OO programs using
existing mathematical apparatus, leads to low effectiveness of code analysis instruments
such as static analyzers and compilers, which causes more functional defects in software
products, which causes customer frustration and financial losses for the business.

4 Prior Art

4.1 Existing Products There are many static analyzers on the market: free
and open source tools such as Checkstyle for the code written in Java [12], PMD for
Java [62], FindBugs for Java [4], cpplint for C/C++ [45], ESLint for JavaScript [85],
Rubocop for Ruby [5], Flake8 for Python [74], and others [67]; commercial tools such
1 https://github.com/yegor256/llvm-playground

https://github.com/yegor256/llvm-playground

Yegor Bugayenko
Page #8 of 16

2023-02-23 03:01

as Coverity for C, C++, Java, and many other languages [21]; Klocwork for C, C++ C#,
and Java [42]; PVS-Studio for C, C++ C#, and Java [64]; and others.

4.2 Object Theories Earlier attempts were made to formalize OOP and introduce
object calculus, for example imperative calculus of objects by Abadi et al. [1], Feather-
weight Java by Igarashi et al. [38], Larch/C++ by Cheon et al. [15], Object-Z by Duke
et al. [24] and VDM++ by Durr et al. [25]. However, all these theoretical attempts to
formalize object-oriented languages were not able to fully describe their features, as for
example was noted by Nierstrasz [58]: “The development of concurrent object-based
programming languages has suffered from the lack of any generally accepted formal
foundations for defining their semantics.” In addition, when describing the attempts of
formalization, Eden [26] summarized: “Not one of the notations is defined formally, nor
provided with denotational semantics, nor founded on axiomatic semantics.” Moreover,
despite these efforts, Ciaffaglione et al. [20, 18, 19] noted in their series of works that
a relatively little formal work has been carried out on object-based languages and it
remains true to this day.

4.3 Our Prior Results Earlier successful attempts have already been made by
the authors to improve and formalize OOP: Elegant Objects, a series of books, were
published [9, 10] where traditional OO design concepts were criticized (alternatives
were suggested too), including NULL references, static methods, getters, mutability, and
so on; Takes2, Cactoos3, and 20+ other Java/Python/C# frameworks were developed by
open source volunteers with said new design concepts in mind4, demonstrating better
readability of the code; EOLANG, an experimental programming language, developed
by a group of 10+ open source volunteers5, also demonstrated advantages of new design
principles, comparing to traditional OOP languages like Java and C++; a few academic
papers have been published on the subject [11], demonstrating benefits of a new OOP
paradigm.

5 Method

5.1 Research Objectives The following goals seem reasonable to achieve:

• Analyze most popular existing object-oriented languages and identify their simi-
larities and differences;

• Formalize OOP similar to how functional and logical programming are formalized
and introduce object calculus, similar to λ-calculus [17];

• Create a new programming language based on the new object calculus;
• Create a set of automated mappers from modern languages like Java and C++ to

2 https://www.takes.org 3 https://www.cactoos.org 4 https:
//www.elegantobjects.org 5 https://github.com/yegor256/eo

https://www.takes.org
https://www.cactoos.org
https://www.elegantobjects.org
https://www.elegantobjects.org
https://github.com/yegor256/eo

Yegor Bugayenko
Page #9 of 16

2023-02-23 03:01

the new language (only a fewmappers will be created by the authors, while others
will be contributed by the open source community spending 2-3 staff-months on
each of them, similar to how it works with LLVM mappers);

• Introduce new static analysis methods based on formal reasoning on the new
object calculus, partially inheriting existing methods of procedural static analysis.

5.2 Key Challenges The most important research questions to be answered:

• Is it possible to define a single IR that is able to represent all the different charac-
teristics of OOP languages?

• What is the optimal set of terms and operations of an object calculus, which
would enable representation of any possible object model?

• How existing OOP constructs can be mapped to a new object calculus without
losing their functionality?

• How semi-OO languages (like Python or JavaScript) can be mapped on a new
strict object calculus?

• How new object calculus can be mapped to existing programming?
• Is it possible to identify defects through formal reasoning on new calculus?

5.3 Evaluation Criteria Although there is no common formula or benchmark
methodology of assessing the quality of analyzers [23], many researches use “recall” and
“precision” metrics as a starting point [59, 49, 52, 46, 23], where the former measures
the proportion of “true positives” identified by analyzer compared to the total number
of defects known to be existing in the code, and the latter indicates the trustworthiness
of the tool by measuring the proportion of correct warnings to the total number of
warnings detected by an analyzer. It is expected to gain at least 10% on each metric, in
comparison with the latest version of Clang Static Analyzer (CSA). It is also important
to take into account the time of analysis, which must not be much longer than what
CSA spends to analyze a program of similar size.

5.4 Verification In order to verify research results it is suggested to apply the
following testing procedure: 1) take a hundred projects from GitHub, which have 1000+
stars and 100+ forks, and are labeled as C++ repositories; 2) filter our .cpp files with
less than 50 and more than 500 NCSS; 3) analyze them with Clang Static Analyzer
(baseline); 4) analyze them using the methods developed during the research (output);
5) manually review defects found in the baseline and absent in the output, decreasing
“recall”; 6) manually review in the opposite direction and decrease “precision”; 7) stop
reviewing after 1000 files or when either recall or precision fail to satisfy the evaluation
criteria.

Yegor Bugayenko
Page #10 of 16

2023-02-23 03:01

6 Proposed Solution

6.1 New Principles How exactly the new object calculus will look is to be
determined by the research, but the following principles seem to be reasonable to
address: unlike subtyping, inheritance is error-prone method of code reuse6; pointers
and NULL references don’t belong to OOP7; objects are the only first-class citizens, while
classes are redundant code templates; static methods and static attributes negatively
affectmaintainability8;mutability leads to object over-sizing and feature creep9; runtime
reflection on types is a design smell10 and a threat to its consistency. More details are
available in the EOLANG: Object-Oriented Programming Language and Object Calculus
paper by Yegor Bugayenko (to be submitted to one of the journals on programming
languages).

6.2 Static Analysis The proposed EOLANG programming language may be used
as intermediary representation for static analysis of OOP code. Using EOLANG and φ-
calculus behind it, may enable higher precision and accuracy in finding defects in OOP
code, especially in C++ and Java. More details are available in the Using EOLANG for
Finding Defects in Object-Oriented Programs paper by Yegor Bugayenko (to be submitted
later to a conference).

6.3 Architecture The Figure 1 explains the architecture. First, the source code
in Java, C++, Python, or almost any other programming language is translated to
EOLANG by one of available open source Mappers. Most of them will most likely be
written in Java with the help of ANTLR4 [60]. Then, EOLANG is sent to the Sourcer,
which creates XML instructions and modifies the IR. Also, the source code in, for
example, C++ may be sent to the Parser, which will take some important parts of it,
like inline comments or code formatting details, and also modify EOLANG objects
accordingly. After that, Advisers query EOLANG objects and make modifications to
it. Each Adviser may implement its own analysis method and enrich the IR with the
relevant information. Finally, Rules step it and read the IR, trying to find bugs.

7 Expected Outcomes

7.1 Scientific Effect If the suggested research plan succeeds, the following
positive outcome is possible for computer science and the domain of programming
languages in particular:
6 https://www.infoworld.com/article/2073649/why-extends-is-evil.html 7 https:
//www.yegor256.com/2014/05/13/why-null-is-bad.html 8 https:
//codeburst.io/af3e73bd29dd 9 https:
//www.yegor256.com/2014/06/09/objects-should-be-immutable.html 10 https:
//wiki.c2.com/?RuntimeReflectionIsaDesignSmell

https://www.infoworld.com/article/2073649/why-extends-is-evil.html
https://www.yegor256.com/2014/05/13/why-null-is-bad.html
https://www.yegor256.com/2014/05/13/why-null-is-bad.html
https://codeburst.io/af3e73bd29dd
https://codeburst.io/af3e73bd29dd
https://www.yegor256.com/2014/06/09/objects-should-be-immutable.html
https://www.yegor256.com/2014/06/09/objects-should-be-immutable.html
https://wiki.c2.com/?RuntimeReflectionIsaDesignSmell
https://wiki.c2.com/?RuntimeReflectionIsaDesignSmell

Yegor Bugayenko
Page #11 of 16

2023-02-23 03:01

EO IRSourcerMapper

Mapper

Mapper Advisor(s)Advisor(s)Advisor(s)

Rule(s)Rule(s)Rule(s)

ParserJava

C++

Python

EO XML

EOLANG

EOLANG

EOLANG

EO XML

Figure 1: UML Component Diagram of key elements wired together

• OOP will finally obtain its lacking component—object calculus;
• It will help design better languages, compilers, and static analyzers;
• New and better methods of static analysis will be introduced.

7.2 Industry Effect The industry of software development may benefit too:

• The quality of software will be increased, meaning less functional bugs (there
are many other quality aspects of software to be increased, but this one is the
most obvious and measurable);

• New programming language may become an alternative to Java and C++;
• It may be used in microservices, embedded software, and so on;
• New polyglot static analyzer may outperform CSA with better soundness and
accuracy by at least 10%, as mentioned in the Section 5.3;

• The maintainability and security of the source code written by millions of pro-
grammers may be improved through the introduction of a common formal ground
of OOP;

• The analyzer may be open-sourced and certified to help software teams deliver
higher quality of code with no additional costs.

7.3 Probability of Success Even though, as was demonstrated above, many
attempts to formalize object-oriented programming were not successful, we believe
that our new research may produce the outcome we are looking for. First, as Section 4
explained, our existing tools, libraries, and frameworks empirically demonstrated the

Yegor Bugayenko
Page #12 of 16

2023-02-23 03:01

solidness of the new paradigm. Second, modern higher-level programming languages
like Kotlin and Groovy, are much further away from low-level procedural paradigm,
which dominated when first attempts to formalize OOP were made—this situation gives
us higher chances to succeed. Third, the first version of our new object calculus has
already been created and a new programming language on top it was implemented—this
proof-of-concept, if future research is done properly, is a promising indicator of success.

Yegor Bugayenko
Page #13 of 16

2023-02-23 03:01

References

[1] Martín Abadi et al. “An Imperative
Object Calculus”. In: Theory and
Practice of Object Systems 1.3 (1995).

[2] Frances E Allen. “Control Flow
Analysis”. In: ACM SIGPLAN Notices
5.7 (1970), pp. 1–19.

[3] Deborah J Armstrong. “The Quarks
of Object-Oriented Development”.
In: Communications of the ACM 49.2
(2006).

[4] Nathaniel Ayewah et al. “Using
Static Analysis to Find Bugs”. In:
IEEE Software 25.5 (2008), pp. 22–29.

[5] Bozhidar Batsov. Rubocop. 2020.
[6] David Binkley. “Source Code

Analysis: A Road Map”. In: Future of
Software Engineering. IEEE. 2007,
pp. 104–119.

[7] Joshua Bloch. Effective Java. Pearson
Education India, 2016.

[8] Manfred Broy et al. “Demystifying
Maintainability”. In: Proceedings of
the International Workshop on
Software Quality. 2006, pp. 21–26.

[9] Yegor Bugayenko. Elegant Objects.
Vol. 1. Amazon, 2016.

[10] Yegor Bugayenko. Elegant Objects.
Vol. 2. Amazon, 2017.

[11] Yegor Bugayenko. “The Impact of
Constructors on the Validity of
Class Cohesion Metrics”. In: IEEE
International Conference on Software
Architecture Companion (ICSA-C).
IEEE. 2020, pp. 67–70.

[12] Oliver Burn. Checkstyle. 2020.
[13] Marcio Buss. “Summary-based

Pointer Analysis Framework for
Modular Bug Finding”. In: (Dec.
2008).

[14] CERT. SEI CERT C Coding Standard
– Rules for Developing Safe, Reliable,
and Secure Systems. 2016.

[15] Yoonsik Cheon et al. A Quick
Overview of Larch/C++. 1994.

[16] Brian Chess et al. Secure
Programming with Static Analysis.
Pearson Education, 2007.

[17] Alonzo Church. “A set of postulates
for the foundation of logic”. In:
Annals of Mathematics 1 (1932).

[18] Alberto Ciaffaglione et al.
“Imperative Object-Based Calculi in
Co-inductive Type Theories”. In:
International Conference on Logic for
Programming Artificial Intelligence
and Reasoning. Jan. 2003, pp. 59–77.

[19] Alberto Ciaffaglione et al.
“Reasoning about Object-Based
Calculi in (Co)Inductive Type
Theory and the Theory of Contexts”.
In: Journal of Automated Reasoning
39 (July 2007).

[20] Alberto Ciaffaglione et al.
“Reasoning on an Imperative
Object-based Calculus in Higher
Order Abstract Syntax”. In: Eighth
ACM SIGPLAN International
Conference on Functional
Programming, Workshop on
Mechanized Reasoning about
Languages with Variable Binding.
Aug. 2003.

[21] Coverity. 2019.
[22] Ádám Darvas et al. “A Theorem

Proving Approach to Analysis of
Secure Information Flow”. In:
International Conference on Security
in Pervasive Computing. Springer.
2005, pp. 193–209.

[23] Aurelien Delaitre et al. “Evaluating
Bug Finders–Test and Measurement
of Static Code Analyzers”. In:
IEEE/ACM 1st International
Workshop on Complex Faults and
Failures in Large Software Systems.
IEEE. 2015, pp. 14–20.

[24] Roger Duke et al. The Object-Z
Specification Language. Springer,
1991.

[25] Eugene Durr et al. “VDM++, A
Formal Specification Language for
Object-Oriented Designs”. In:
Proceedings Computer Systems and
Software Engineering. 1992.

Yegor Bugayenko
Page #14 of 16

2023-02-23 03:01

[26] Amnon Eden. “A Visual Formalism
for Object-Oriented Architecture”.
In: Integrated Design and Process
Technology. Citeseer, 2002.

[27] Dawson Engler et al. “Checking
System Rules Using System-specific,
Programmer-written Compiler
Extensions”. In: Proceedings of the
4th conference on Symposium on
Operating System Design &
Implementation. Vol. 4. 2000.

[28] Cormac Flanagan et al. “Type-based
Race Detection for Java”. In:
Proceedings of the ACM SIGPLAN
2000 Conference on Programming
Language Design and
Implementation. New York, NY, USA:
ACM, 2000, pp. 219–232.

[29] Jeffrey S Foster et al. “Flow-sensitive
Type Qualifiers”. In: Proceedings of
the ACM SIGPLAN 2002 Conference
on Programming Language Design
and Implementation. 2002, pp. 1–12.

[30] Martin Fowler. Refactoring:
Improving the Design of Existing
Code. Addison-Wesley Professional,
2018.

[31] B.G. Geetha et al. “A Tool for
Testing of Inheritance Related Bugs
in Object Oriented Software”. In:
Journal of Computer Science 4 (Jan.
2008).

[32] Brian Goetz et al. Java Concurrency
in Practice. Pearson Education, 2006.

[33] Anjana Gosain et al. “Static
Analysis: A Survey of Techniques
and Tools”. In: Intelligent Computing
and Applications. Springer, 2015,
pp. 581–591.

[34] Ericsson Hungary. CodeChecker, a
Static Analysis Infrastructure Built on
the LLVM/Clang Static Analyzer
Toolchain, Replacing Scan-build in a
Linux or macOS (OS X) Development
Environment. 2019. url:
https://codechecker.
readthedocs.io/en/latest/.

[35] IEC. IEC 61508, Functional Safety of
Electrical/Electronic/Programmable

Electronic Safety-related Systems.
2010.

[36] IEC. IEC 62279, Railway Applications
- Communication, Signalling and
Processing Systems - Software for
Railway Control and Protection
Systems. 2015.

[37] IEC. IEC 62304, Medical Device
Software - Software Life Cycle
Processes. 2015.

[38] Atsushi Igarashi et al.
“Featherweight Java: a Minimal Core
Calculus for Java and GJ”. In: ACM
Transactions on Programming
Languages and Systems 23.3 (2001).

[39] ISO. ISO 26262: Road
vehicles—Functional safety. 2011.

[40] Daniel Jackson et al. “Software
Analysis: A Roadmap”. In:
Proceedings of the Conference on the
Future of Software Engineering. 2000,
pp. 133–145.

[41] Brittany Johnson et al. “Why Don’t
Software Developers Use Static
Analysis Tools to Find Bugs?” In:
2013 35th International Conference on
Software Engineering. IEEE. 2013,
pp. 672–681.

[42] Klocwork. Perforce, 2020.
[43] Ted Kremenek. Finding Software

Bugs With the Clang Static Analyzer.
2008. url: https:
//llvm.org/devmtg/2008-08/
Kremenek_StaticAnalyzer.pdf.

[44] Ted Kremenek et al. “Z-ranking:
Using Statistical Analysis to Counter
the Impact of Static Analysis
Approximations”. In: International
Static Analysis Symposium. Springer.
2003, pp. 295–315.

[45] Thibault Kruse. cpplint. 2020.
[46] James A Kupsch et al. “Manual vs.

Automated Vulnerability
Assessment: A Case Study”. In: First
International Workshop on Managing
Insider Security Threats. 2009,
pp. 83–97.

[47] Chris Lattner. Clang: a C Language
Family Frontend for LLVM. 2020. url:

https://codechecker.readthedocs.io/en/latest/
https://codechecker.readthedocs.io/en/latest/
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf
https://llvm.org/devmtg/2008-08/Kremenek_StaticAnalyzer.pdf

Yegor Bugayenko
Page #15 of 16

2023-02-23 03:01

https:
//clang.llvm.org/index.html.

[48] Chris Lattner et al. “LLVM: A
Compilation Framework for
Lifelong Program Analysis &
Transformation”. In: International
Symposium on Code Generation and
Optimization. IEEE. 2004, pp. 75–86.

[49] Shan Lu et al. “Bugbench:
Benchmarks for Evaluating Bug
Detection Tools”. In:Workshop on
the Evaluation of Software Defect
Detection Tools. Vol. 5. 2005.

[50] Ole Lehrmann Madsen et al. “What
Object-Oriented Programming May
Be-and What It Does Not Have to
Be”. In: European Conference on
Object-Oriented Programming. 1988.

[51] Kazimir Majorinc. “Elipse-Circle
Dilemma and Inverse Inheritance”.
In: ITI 98. 1998.

[52] Meade. CAS Static Analysis Tool
Study - Methodology. Center for
Assured Software, National Security
Agency. 2012. url:
https://samate.nist.gov/
docs/CAS%202012%20Static%
20Analysis%20Tool%20Study%
20Methodology.pdf.

[53] Bertrand Meyer. Object-Oriented
Software Construction. Prentice Hall,
1997.

[54] Leonid Mikhajlov et al. “A Study of
the Fragile Base Class Problem”. In:
European Conference on
Object-Oriented Programming. 1998.

[55] MISRA. MISRA C:2012. 2012.
[56] Anders Møller et al. “Static Program

Analysis”. In: (2019).
[57] Oscar Nierstrasz. A Survey of

Object-Oriented Concepts. 1989.
[58] Oscar Nierstrasz. “Towards an

Object Calculus”. In: European
Conference on Object-Oriented
Programming. 1991.

[59] Paulo Nunes et al. “On Combining
Diverse Static Analysis Tools for
Web Security: An Empirical Study”.
In: 13th European Sependable

Computing Conference. IEEE. 2017,
pp. 121–128.

[60] Terence Parr. The Definitive
ANTLR 4 Reference. Pragmatic
Bookshelf, 2013.

[61] Strategic Planning. “The Economic
Impacts of Inadequate Infrastructure
for Software Testing”. In: National
Institute of Standards and Technology
(2002).

[62] PMD. PMD. 2020.
[63] Daryl Posnett et al. “A Simpler

Model of Software Readability”. In:
Proceedings of the 8th Working
Conference on Mining Software
Repositories. 2011, pp. 73–82.

[64] PVS-Studio. PVS-Studio Team, 2020.
[65] Kevin Roebuck. Object-Oriented

Analysis and Design: High-Impact
Strategies. Tebbo, 2011.

[66] RTCA. DO-178C, Software
Considerations in Airborne Systems
and Equipment Certification. 2011.

[67] Nick Rutar et al. “A Comparison of
Bug Finding Tools for Java”. In: 15th
International Symposium on Software
Reliability Engineering. IEEE. 2004,
pp. 245–256.

[68] Caitlin Sadowski et al. “Lessons
from Building Static Analysis Tools
at Google”. In: Communications of
the ACM 61.4 (2018), pp. 58–66.

[69] Vaskaran Sarcar. Quick Recap of OOP
Principles. Berkeley, CA: Apress,
2020.

[70] Philipp Dominik Schubert et al.
“PhASAR: An Inter-procedural Static
Analysis Framework for C/C++”. In:
Tools and Algorithms for the
Construction and Analysis of Systems.
Cham: Springer International
Publishing, 2019, pp. 393–410.

[71] Kathy Sierra et al. Head First Java: A
Brain-Friendly Guide. O’Reilly
Media, 2005.

[72] Jiri Slaby. “Automatic Bug-finding
Techniques for Large Software
Projects”. In: 2013.

https://clang.llvm.org/index.html
https://clang.llvm.org/index.html
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf
https://samate.nist.gov/docs/CAS%202012%20Static%20Analysis%20Tool%20Study%20Methodology.pdf

Yegor Bugayenko
Page #16 of 16

2023-02-23 03:01

[73] Yannis Smaragdakis et al. “Pointer
Analysis”. In: Foundations and
Trends in Programming Languages
2.1 (2015), pp. 1–69.

[74] Ian Stapleton. Flake8. 2020.
[75] Mark Stefik et al. “Object-Oriented

Programming: Themes and
Variations”. In: AI Magazine 6.4
(1985).

[76] Daniela Steidl et al. “Prioritizing
Maintainability Defects Based on
Refactoring Recommendations”. In:
Proceedings of the 22nd International
Conference on Program
Comprehension. 2014, pp. 168–176.

[77] Yulei Sui et al. “SVF: Interprocedural
Static Salue-flow Analysis in LLVM”.
In: Mar. 2016, pp. 265–266.

[78] Toni Suter. “Constraint Based
Analysis”. In: (2014).

[79] David A Wagner et al. “A First Step
towards Automated Detection of
Buffer Overrun Vulnerabilities”. In:
NDSS. Vol. 20. 0. 2000.

[80] Stefan Wagner et al. “Comparing
Bug Finding Tools With Reviews
and Tests”. In: IFIP International

Conference on Testing of
Communicating Systems. Springer.
2005, pp. 40–55.

[81] Mitchell Wand. “A Simple Algorithm
and Proof for Type Inference”. In:
Fundamenta Informaticae 10.2 (1987),
pp. 115–121.

[82] Jingyue Wu et al. “Effective
Dynamic Detection of Alias
Analysis Errors”. In: Proceedings of
the 9th Joint Meeting on Foundations
of Software Engineering. New York,
NY, USA: ACM, 2013, pp. 279–289.

[83] Thomas Würthinger et al. “One VM
to Rule Them All”. In: Proceedings of
the 2013 ACM International
Symposium on New Ideas, New
Paradigms, and Reflections on
Programming & Software. 2013,
pp. 187–204.

[84] Aiko Yamashita et al. “Do Code
Smells Reflect Important
Maintainability Aspects?” In: 28th
International Conference on Software
Maintenance. IEEE. 2012,
pp. 306–315.

[85] Nicholas C. Zakas. ESLint. 2020.

	Background
	Types of Bugs
	Problem Formulation
	Prior Art
	Method
	Proposed Solution
	Expected Outcomes

